Stability of second-order recurrences modulo pr

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Second–order Recurrences

We give explicit solutions to two longstanding problems on coupled second–order recurrences.

متن کامل

COMPLETE AND REDUCED RESIDUE SYSTEMS OF SECOND-ORDER RECURRENCES MODULO p

Fix a prime/?. We say that a set S forms a complete residue system modulop if, for all i such that 0 < i < p 1 , there exists s GS such that s = J (mod /?). We say that a set S forms a reduced residue system modulo p if, for all / such that 1 < i < p -1, there exists s GS such that s = i (mod p). In [9], Shah showed that, ifp is a prime and p = 1,9 (mod 10), then the Fibonacci sequence does not...

متن کامل

Second-order Linear Recurrences of Composite Numbers

In a well-known result, Ronald Graham found a Fibonacci-like sequence whose two initial terms are relatively prime and which consists only of composite integers. We generalize this result to nondegenerate second-order recurrences.

متن کامل

Two-weight codes and second order recurrences

Cyclic codes of dimension 2 over a finite field are shown to have at most two nonzero weights. This extends a construction of Rao et al (2010) and disproves a conjecture of Schmidt-White (2002). We compute their weight distribution, and give a condition on the roots of their check polynomials for them to be MDS.

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2000

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171200003240